What are the steps to integrate probabilistic forecasting into the supply chain of an Aerospace MRO (i.e, similar to your work with Air France Industries), particularly when I'm a minor player (employee) handling it independently without any investment capital, but rather as part of my job responsibilities?

Additionally, as you have discussed in your YouTube videos and articles, is forecasting truly the answer, or should the focus be more on reengineering the supply chain or implementing other process modifications across different levels?

Thank you for the detailed insights!. It's always enlightening to hear from experts like Lokad. While I understand Lokad's active involvement and experimentation with LLMs, I'd like to share my perspective based on your points and my own observations.

Firstly, the limitations you mentioned regarding LLMs, especially their inability to learn post their initial training, is indeed a significant challenge. Their textual (and sometimes image) processing capabilities, though remarkable, may not suffice for the intricate nuances of supply chain transactional data. This is especially true when considering that such data comprises over 90% of pertinent supply chain information.

However, I envision generative AI working in tandem with supply chain teams, not replacing them. The role of a learning agent (at each node) could be used to assist these teams, enabling them to capture a more comprehensive representation of unconstrained demand and thereby enriching their baseline models. While the potential of AI in supply chains is vast, solely relying on this technology for business practices might be too early, given its experimental nature.

In the future, I believe the challenge won't be about replacing current practices with LLM-powered processes but merging both to create a hybrid model where technology complements human expertise. Just as eCommerce companies evolved from but differ vastly from mail-order companies of the 19th century, our future supply chain practices will likely be an evolution, not a replacement, of current methods.